Dynamics of Fractional Stochastic Ginzburg–Landau Equation Driven by Nonlinear Noise
نویسندگان
چکیده
In this work, we focus on the long-time behavior of solutions stochastic fractional complex Ginzburg–Landau equation defined Rn with polynomial drift terms arbitrary order. The well-posedness based pathwise uniform estimates and average are proved. Following this, existence uniqueness weak pullback random attractors establsihed.
منابع مشابه
Stochastic Heat Equation Driven by Fractional Noise and Local Time
The aim of this paper is to study the d-dimensional stochastic heat equation with a multiplicative Gaussian noise which is white in space and it has the covariance of a fractional Brownian motion with Hurst parameter H ∈ (0, 1) in time. Two types of equations are considered. First we consider the equation in the Itô-Skorohod sense, and later in the Stratonovich sense. An explicit chaos developm...
متن کاملA quasilinear stochastic partial differential equation driven by fractional white noise
We approximate the solution of a quasilinear stochastic partial differential equation driven by fractional Brownian motion BH(t); H ∈ (0, 1), which was calculated via fractional White Noise calculus, see [5].
متن کاملA singular stochastic differential equation driven by fractional Brownian motion∗
In this paper we study a singular stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter H > 1 2 . Under some assumptions on the drift, we show that there is a unique solution, which has moments of all orders. We also apply the techniques of Malliavin calculus to prove that the solution has an absolutely continuous law at any time t > 0.
متن کاملStochastic nonlinear Schrödinger equations driven by a fractional noise Well posedness, large deviations and support
We consider stochastic nonlinear Schrödinger equations driven by an additive noise. The noise is fractional in time with Hurst parameter H in (0, 1). It is also colored in space and the space correlation operator is assumed to be nuclear. We study the local well-posedness of the equation. Under adequate assumptions on the initial data, the space correlations of the noise and for some saturated ...
متن کاملFractional Fokker–Planck equation for nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises
The Fokker–Planck equation has been very useful for studying dynamic behavior of stochastic differential equations driven by Gaussian noises. However, there are both theoretical and empirical reasons to consider similar equations driven by strongly non-Gaussian noises. In particular, they yield strongly non-Gaussian anomalous diffusion which seems to be relevant in different domains of Physics....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math10234485